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Rainfall Extreme Events and their dynamics in South
America

1. Climate of South America and the South
American Monsoon System

2. Impact of Climate on the Environment

 Glacial retreat
 Amazon discharge

3. Weather and Climate of the NW Argentine
Andes

4. Linkages between Climate and Erosion



Global Monsoon Areas
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Global monsoon domains are approximated by the following approach: where the grid-cell
summer-minus-winter precipitation rate exceeds 2.5 mm/day and the local summer
precipitation exceeds 55 % of the annual total.
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I z Glaciers in South America
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Land Surface Temperature in
South America
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Temperature Variability along the Andes orogen.
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Climate and Glaciers in South America
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Topographic variability and glacier locations along the Andes orogen.
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Climate and Glaciers in South America
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Climatic Gradients in the Central Andes
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Climatic Gradients in the Southern Central Andes
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Climatic and Vegetation Gradients in the S. Central Andes

astern Puna
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Climatic and Vegetation Gradients in the S. Central Andes

astern Puna
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Pleistocene-Holocene lake-level highstands in the Central Andes:
paleoclimatic proxy record
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Rainfall Extreme Events and their dynamics in South
America

1. Climate of South America and the South
American Monsoon System

2. Impact of Climate on the Environment

e Glacial retreat
 Amazon discharge

3. Weather and Climate of the NW Argentine
Andes

4. Linkages between Climate and Erosion




Earth Surface Processes and
Geomorphology
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Geomorphology is the study of landforms and
- processesthat shapes them:.

—— .

Geomorphologists study forces that move or
transport mass.on the Earth’s surface. For
example, rivers (fluvial forces), wind (aeolian
~forces), glaciers and permafrost, biological and
biophysical processes, and various gravitational-
driven mass movements (landslides, debris flows,
creep).



Earth Surface Processes and
Geomorphology
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Geomorphology is tHé s/t‘udy of how landscape
~grows and decays (or erodes).. .

* What are the magnitudes and timescales of
transport progesses? . 23
Xfod How does climate, vegetation, and civilization
impactEarth Surface Processes and how do they
“interact? 5



. Sediment tfransport from
o the ocean is an |mp r
cﬂural cycle of mass .

1ese processes qre
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Fluvial Discharge of Suspended Sediment to
the Coastal Ocean

Total = 19,000 x 10° t/yr

illiman and Farnsworth, 2011



Key grobl ems

3 ﬂ"!:::{;--

&
4G
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Spatial distribution of large anthropogenic

reservoirs
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Large reservoirs are subject to sediment infilling;
rapid infilling will decrease a reservoir’s life time.

Vorosmarty et al., 2003
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The interface between Earth Surface
Processes and Civilization

Why do we care about mass-transport processes?



The interface between Earth Surface
Processes and Civilization
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Aggradatlon or sed/ment-mﬁll/ng of valleys ?
during the past decade has a significant impact
on the environment.
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Aggradation or sediment-infilling of valleys
during the past decade has a significant impact

on the environment.



Potential source of sediments: increased
rilling’ ( or ‘arroyo’ formation) and transport of
material from upstream usually arid areas.



Bathymetry
(km bsl)

[ ] <025

] 025-05
B 05-1.0
B 10-20
B 20-30
I 30-40
B 40

Elevation
(km asl)

[ <025

[] 0.25-0.5
B 05-10
Bl 10-20
B 20-30
I 30-40
[ ] >40

calibrated
TRMM 2B31
annual rainfall -
1998 to 2007
(m/yr)

B <05
B 05-1.0
[ ]10-20
[ 20-3.0
B 30-40
B 40

Climatic Gradients in the Central Andes

Bookhagen and Strecker, 2008, 2012



Southern Central
Andes -

2wt R, Uil

»
Assghl, BRaR




Southern Central
Andes -
Hydrologic
Catchments of the
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Southern Central
Andes -
Mean Annual rainfall
(1998-2013)

Mean annual rainfall from
TRMM2B31 and 2A25 show

a ~10-fold rainfall gradient
from the eastern foreland
to the Altiplano.

Bookhagen and Strecker, 2008;
Bookhagen and Strecker, in preparation
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Rainfall and Topographic Swath Profile |
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Rainfall and Topographlc Swath Profilelll
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Modern and Paleo-erosion rates during pIuviaI periods
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Rainfall Gradient and Specific Stream Power I
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CRN erosion rate (mml/yr)
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CRN erosion rate (mml/yr)
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Climatic Impact on Channel Slopes
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Channel slope (m/m)

1072

Climatic Impact on Channel Slopes i

Arid (< 0.25 m/yr) areas
Y = 2.710.4 * X'0.24to.01
r? = 0.99; n = 824,705
Humid (> 0.75 m/yr) areas
Y =4.0+09* x-0.27i0.01
r? = 0.99; n = 511,526
o
I I
106 107 108

Drainage area (m2)

10°

Bookhagen and Strecker, 2012



Channel slope (m/m)
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Bedrock Eresion (micro miyr)
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Significant Aeolian
Erosion on the Puna
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Conclusions

1. Catchment-mean erosion rates
decrease by two orders of
magnitudes across the south-
central Andes from east to west.
Aeolian erosion increases from
east to west by ~one order of
magnitude.

2. Climatic patterns exert first-order
control on erosion rates along the
steep climatic gradient.

3. Pluvial Periods may significantly
increase erosion rates.




